Covid19 Global Forecasting Project Part1

  • 153
  • 0

最近再進行Covid19 Global Forecasting Project ,所以紀錄Covid19預測過程 。

這篇會先介紹Data info與Data process

 

一. Training Data & Test Data

資料來源 : https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data

目前各大統計圖表資料大部分都是從此取得,不用WHO的資料是因為沒有提供Recovered_Case(復原人數)

此預測Recovered_Case是非常重要的變數,因此採用此來源。

import pandas as pd
#Recoveries_case data
Recoveries_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv'
Recoveries_df = pd.read_csv(Recoveries_url, error_bad_lines=False)
Recoveries_df = Recoveries_df[(Recoveries_df['Lat']!=0) & (Recoveries_df['Long']!=0) ]

#Confirmed_case data
Confirmed_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv'
Confirmed_df = pd.read_csv(Confirmed_url, error_bad_lines=False)
Confirmed_df = Confirmed_df[(Confirmed_df['Lat']!=0) & (Confirmed_df['Long']!=0) ]

#Deaths_case data
Deaths_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv'
Deaths_df = pd.read_csv(Deaths_url , error_bad_lines=False)
Deaths_df = Deaths_df[(Deaths_df['Lat']!=0) & (Deaths_df['Long']!=0) ]


#US_Confirmed_case data
US_Confirmed_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv'
US_Confirmed_df = pd.read_csv(US_Confirmed_url, error_bad_lines=False)

#US_Deaths_case data
US_Deaths_url = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_US.csv'
US_Deaths_df = pd.read_csv(US_Deaths_url, error_bad_lines=False)
#US_Deaths_df = US_Deaths_df[(Deaths_df['Lat']!=0) & (Deaths_df['Long']!=0) ]

這邊全球與美國的確診、死亡人數是分開來的,我猜可能是美國後來爆發他們挪出來個案去分析

不過不影響我們去分析,各別讀出來再合併即可。

Confirmed_df
  Province/State Country/Region Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20 ... 4/19/20 4/20/20 4/21/20 4/22/20 4/23/20 4/24/20 4/25/20 4/26/20 4/27/20 4/28/20
0 NaN Afghanistan 33.000000 65.000000 0 0 0 0 0 0 ... 996 1026 1092 1176 1279 1351 1463 1531 1703 1828
1 NaN Albania 41.153300 20.168300 0 0 0 0 0 0 ... 562 584 609 634 663 678 712 726 736 750
2 NaN Algeria 28.033900 1.659600 0 0 0 0 0 0 ... 2629 2718 2811 2910 3007 3127 3256 3382 3517 3649
3 NaN Andorra 42.506300 1.521800 0 0 0 0 0 0 ... 713 717 717 723 723 731 738 738 743 743
4 NaN Angola -11.202700 17.873900 0 0 0 0 0 0 ... 24 24 24 25 25 25 25 26 27 27
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
259 Saint Pierre and Miquelon France 46.885200 -56.315900 0 0 0 0 0 0 ... 1 1 1 1 1 1 1 1 1 1
260 NaN South Sudan 6.877000 31.307000 0 0 0 0 0 0 ... 4 4 4 4 5 5 5 6 6 34
261 NaN Western Sahara 24.215500 -12.885800 0 0 0 0 0 0 ... 6 6 6 6 6 6 6 6 6 6
262 NaN Sao Tome and Principe 0.186360 6.613081 0 0 0 0 0 0 ... 4 4 4 4 4 4 4 4 4 8
263 NaN Yemen 15.552727 48.516388 0 0 0 0 0 0 ... 1 1 1 1 1 1 1 1 1 1

確診資料如上,欄位名稱蠻好理解的,這邊我就不多加闡述

而我想要讓Training data轉換成的格式如下 :

  Province_State Country_Region Date ConfirmedCases
0 NaN Afghanistan 2020/1/22 0
1 NaN Afghanistan 2020/1/23 0
2 NaN Afghanistan 2020/1/24 0
3 NaN Afghanistan 2020/1/25 0
4 NaN Afghanistan 2020/1/26 0
... ... ... ... ...
25377 NaN Sao Tome and Principe 2020/4/24 4
25378 NaN Sao Tome and Principe 2020/4/25 4
25379 NaN Sao Tome and Principe 2020/4/26 4
25380 NaN Sao Tome and Principe 2020/4/27 4
25381 NaN Sao Tome and Principe 2020/4/28 8

轉換過程如下:

def DataTransform(df):
    data_list = []
    #刪除Lat、Long欄位
    del df['Lat']
    del df['Long']
    #行列轉置
    for n in range(0,len(df)-1):
        Date = df.iloc[n,2:].index.values.tolist()
        Recoveries=df.iloc[n,2:].values.tolist()
        Country = df.iloc[n:n+1,1:2].values.tolist()
        Province = df.iloc[n:n+1,0:1].values.tolist()
        for j in range(0,len(Province)):
            for i in range(0,len(Date)):
                day = Date[i].split('/')[1]
                month = Date[i].split('/')[0]
                year = "20"+Date[i].split('/')[2]
                Date_ = year+"/"+month+"/"+day
                data_list.extend([[Province[j][0],Country[j][0],Date_,Recoveries[i]]])
    return data_list


Recoveries_list = DataTransform(Recoveries_df)
Confirmed_list = DataTransform(Confirmed_df)
Deaths_list = DataTransform(Deaths_df)

Trans_Recoveries_df = pd.DataFrame(data = Recoveries_list,columns =['Province_State','Country_Region','Date','Recoveries'])
Trans_Confirmed_df = pd.DataFrame(data = Confirmed_list ,columns =['Province_State','Country_Region','Date','ConfirmedCases'])
Trans_Deaths_df = pd.DataFrame(data = Deaths_list ,columns =['Province_State','Country_Region','Date','Deaths'])

全球的資料經由上述程式碼就完成了,美國的資料我這邊就不寫了,各位可以練習看看。

最後將Global Data & US Date concat就是我們的Training data

Test date 格式也一樣,轉換過程如下:

Test_list = []
TestDate = ['2020/4/1','2020/4/2','2020/4/3','2020/4/4','2020/4/5','2020/4/6','2020/4/7','2020/4/8','2020/4/9','2020/4/10','2020/4/11','2020/4/12','2020/4/13','2020/4/14','2020/4/15','2020/4/16','2020/4/17','2020/4/18','2020/4/19','2020/4/20','2020/4/21','2020/4/22','2020/4/23','2020/4/24','2020/4/25','2020/4/26','2020/4/27','2020/4/28','2020/4/29','2020/4/30']
tmp = train.drop_duplicates(subset=['Province_State','Country_Region'], keep='first')
Test_Province_State = tmp['Province_State'].values.tolist()
Test_Country_Region = tmp['Country_Region'].values.tolist()
for i in range(0,len(Test_Province_State)):
    for j in range(0,len(TestDate)):
        Test_list.extend([[Test_Province_State[i],Test_Country_Region[i],TestDate[j]]])
Test_df = pd.DataFrame(data = Test_list,columns =['Province_State','Country_Region','Date']) 
Test_df.index.names = ['ForecastId']

Test data轉換成的格式如下 :

  Province_State Country_Region Date
ForecastId      
0 NaN Afghanistan 2020/4/1
1 NaN Afghanistan 2020/4/2
2 NaN Afghanistan 2020/4/3
3 NaN Afghanistan 2020/4/4
4 NaN Afghanistan 2020/4/5
... ... ... ...
9475 Wyoming US 2020/4/26
9476 Wyoming US 2020/4/27
9477 Wyoming US 2020/4/28
9478 Wyoming US 2020/4/29
9479 Wyoming US 2020/4/30

 

二. Visualizations

會簡單呈現幾個圖表,其實對預測幫助甚少,只是好看而已 (誤

import pycountry_convert as pc
import pycountry
import plotly.express as px

class country_utils():
    def __init__(self):
        self.d = {}
    
    def get_dic(self):
        return self.d
    
    def get_country_details(self,country):
        """Returns country code(alpha_3) and continent"""
        try:
            country_obj = pycountry.countries.get(name=country)
            if country_obj is None:
                c = pycountry.countries.search_fuzzy(country)
                country_obj = c[0]
            continent_code = pc.country_alpha2_to_continent_code(country_obj.alpha_2)
            continent = pc.convert_continent_code_to_continent_name(continent_code)
            return country_obj.alpha_3, continent
        except:
            #國家名修改,不然抓不到對應國家
            if 'Congo' in country:
                country = 'Congo'
            elif country == 'Diamond Princess' or country == 'Laos' or country == 'MS Zaandam'\
            or country == 'Holy See' or country == 'Timor-Leste':
                return country, country
            elif country == 'Korea, South' or country == 'South Korea':
                country = 'Korea, Republic of'
            elif country == 'Taiwan*':
                country = 'Taiwan'
            elif country == 'Burma':
                country = 'Myanmar'
            elif country == 'West Bank and Gaza':
                country = 'Gaza'
            else:
                return country, country
            country_obj = pycountry.countries.search_fuzzy(country)
            continent_code = pc.country_alpha2_to_continent_code(country_obj[0].alpha_2)
            continent = pc.convert_continent_code_to_continent_name(continent_code)
            return country_obj[0].alpha_3, continent
    
    def get_iso3(self, country):
        return self.d[country]['code']
    
    def get_continent(self,country):
        return self.d[country]['continent']
    
    def add_values(self,country):
        self.d[country] = {}
        self.d[country]['code'],self.d[country]['continent'] = self.get_country_details(country)
    
    def fetch_iso3(self,country):
        if country in self.d.keys():
            return self.get_iso3(country)
        else:
            self.add_values(country)
            return self.get_iso3(country)
        
    def fetch_continent(self,country):
        if country in self.d.keys():
            return self.get_continent(country)
        else:
            self.add_values(country)
            return self.get_continent(country)

df_map = all_train.copy()
df_map['Date'] = df_map['Date'].astype(str)
df_map = df_map.groupby(['Date','Country_Region'], as_index=False)['ConfirmedCases','Fatalities'].sum()
obj = country_utils()
df_map['iso_alpha'] = df_map.apply(lambda x: obj.fetch_iso3(x['Country_Region']), axis=1)
#取log才能讓各國產生差異感
df_map['log(ConfirmedCases)'] = np.log(df_map.ConfirmedCases + 1)
df_map['log(Fatalities)'] = np.log(df_map.Fatalities + 1)

px.choropleth(df_map, 
              locations="iso_alpha", 
              color="log(ConfirmedCases)", 
              hover_name="Country_Region", 
              hover_data=["ConfirmedCases"] ,
              animation_frame="Date",
              color_continuous_scale=px.colors.sequential.dense, 
              title='Total Confirmed Cases growth')

Output

import plotly.graph_objects as go
def add_daily_measures(df):
    df.loc[0,'Daily Cases'] = df.loc[0,'ConfirmedCases']
    df.loc[0,'Daily Deaths'] = df.loc[0,'Fatalities']
    for i in range(1,len(df)):
        df.loc[i,'Daily Cases'] = df.loc[i,'ConfirmedCases'] - df.loc[i-1,'ConfirmedCases']
        df.loc[i,'Daily Deaths'] = df.loc[i,'Fatalities'] - df.loc[i-1,'Fatalities']
    
    df.loc[0,'Daily Cases'] = 0
    df.loc[0,'Daily Deaths'] = 0
    return df

df_world = all_train.copy()
df_world = df_world.groupby('Date',as_index=False)['ConfirmedCases','Fatalities'].sum()
df_world = add_daily_measures(df_world)
df_world['Cases:7-day rolling average'] = df_world['Daily Cases'].rolling(7).mean()
df_world['Deaths:7-day rolling average'] = df_world['Daily Deaths'].rolling(7).mean()


fig = go.Figure(data=[
    go.Bar(name='Cases', x=df_world['Date'], y=df_world['Daily Cases']),
    go.Bar(name='Deaths', x=df_world['Date'], y=df_world['Daily Deaths'])])

fig.add_trace(go.Scatter(name='Cases:7-day rolling average',x=df_world['Date'],y=df_world['Cases:7-day rolling average'],marker_color='black'))
fig.add_trace(go.Scatter(name='Deaths:7-day rolling average',x=df_world['Date'],y=df_world['Deaths:7-day rolling average'],marker_color='darkred'))


fig.update_layout(barmode='overlay', title='Worldwide daily Case and Death count',showlegend=False)
fig.show()

Output

大致上,疫情已經呈現趨緩的現象,不過國外學者預計還會有第二波高潮,只能希望疫苗的出現。

三. Create Feature

由於原史資料給的資訊實在是太少,我們必須增加Feature

這部分我主要的做法有兩種

  1. creating lag features
  2. create ConfirmedCases、DeathsCase 1~N days diff rate

Lag features大家比較熟悉,不清楚的網路資料也很多,這邊就不多加闡述

ConfirmedCases、DeathsCase 1~N days diff rate 變數名稱如下:

  • (確診 - 死亡 - 康復) / 確診
  • 確診 / 人口
  • 1~3天,前後確診差
  • 1~3天,前後死亡差
  • 1~3天,確診與死亡平均差
  • 1~2天、2~3天,死亡差的比例
  • 1~2天、2~3天,確診差的比例
  • 1~2天、2~3天,確診差的比例平均
  • 1~2天、2~3天,死亡差的比例平均
  • 1~3天,確診比例
  • 1~3天,死亡比例
  • N、N+3天,確診比例
  • N、N+3天,死亡比例
  • 第1、10、50、100、200天確診人數
  • 第1、10、50、100、200天死亡人數
  • 第1、10、50、100、200天復原人數

經由變數擴增讓整體資料有更多的變數指標,這些指標會讓整體預測有相當程度的提升,詳細程式碼會在後面的part再做解釋

下一篇會對Model做介紹