70. Climbing Stairs

70. Climbing Stairs

一、題目

You are climbing a staircase. It takes n steps to reach the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

 

Example 1:

Input: n = 2 Output: 2 Explanation: There are two ways to climb to the top. 1. 1 step + 1 step 2. 2 steps

Example 2:

Input: n = 3 Output: 3 Explanation: There are three ways to climb to the top. 1. 1 step + 1 step + 1 step 2. 1 step + 2 steps 3. 2 steps + 1 step

 

Constraints:

  • 1 <= n <= 45

 

二、程式作法

 /*Dynamic Programming O(n)*/
public class Solution
{
    public int ClimbStairs(int n)
    {
        return Helper(1, 1, n);
    }

    public int Helper(int curr, int next, int n)
    {
        if (n == 0)
            return curr;
        else
            return Helper(next, curr + next, n - 1);
    }
}

/*Depth-first Search O(n^2) Time Limit Exceeded*/
/*
public class Solution
{
    public int ClimbStairs(int n)
    {
        return Helper(n);
    }

    public int Helper(int n)
    {
        if (n == -1)
            return 0;
        if (n == 0)
            return 1;
        return Helper(n - 1) + helper(n - 2);
    }
}
*/

 

三、思路筆記

題目為每次可爬一個階梯或兩個階梯,試問共有 n 階樓梯時,則可有幾種方法爬完?

這題的解法並不適合人類理解,看完各項參考資料後,

我的解法是先理解問題後,再觀察答案的規則,

然後發現是費氐數列後,再以針對費氐數列的程式來解。

到達的方法12358
共有 n 個階梯12345