Chat 2 DB工具,Wren AI,生成式AI,RAG
- 區分以下幾個步驟
- 安裝WSL2,目的在Ubuntu的核心下,使用Linux指令,並可以跑多個Linux虛擬環境
- 安裝docker desktop,管理多個container
- 於ubuntu環境安裝Wren AI
- 使用地端模型設定
wsl -d ubuntu
cd wren-launcher
./wren-launcher-linux
GOOD JOB! 完成
以gemma2:2b為例
## LLM
#LLM_PROVIDER=openai_llm # openai_llm, azure_openai_llm, ollama_llm
#GENERATION_MODEL=GPT-4o-mini
#GENERATION_MODEL_KWARGS={"temperature": 0, "n": 1, "max_tokens": 4096, "response_format": {"type": "json_object"}}
LLM_PROVIDER=ollama_llm # openai_llm, azure_openai_llm, ollama_llm
GENERATION_MODEL=gemma2:2b
GENERATION_MODEL_KWARGS={"temperature": 0, "n": 1, "max_tokens": 512, "response_format": {"type": "json_object"}}
# openai or openai-api-compatible
LLM_OPENAI_API_KEY=
LLM_OPENAI_API_BASE=
# azure_openai
LLM_AZURE_OPENAI_API_KEY=
LLM_AZURE_OPENAI_API_BASE=
LLM_AZURE_OPENAI_VERSION=
# ollama
LLM_OLLAMA_URL=http://host.docker.internal:11434
# ## EMBEDDER
# EMBEDDER_PROVIDER=openai_embedder # openai_embedder, azure_openai_embedder, ollama_embedder
# # supported embedding models providers by qdrant: https://qdrant.tech/documentation/embeddings/
# EMBEDDING_MODEL=text-embedding-3-large
# EMBEDDING_MODEL_DIMENSION=3072
## EMBEDDER
EMBEDDER_PROVIDER=ollama_embedder # openai_embedder, azure_openai_embedder, ollama_embedder
# supported embedding models providers by qdrant: https://qdrant.tech/documentation/embeddings/
EMBEDDING_MODEL=nomic-embed-text
EMBEDDING_MODEL_DIMENSION=768 #nomic-embed-text dimension :64~768
# openai or openai-api-compatible
EMBEDDER_OPENAI_API_KEY=
EMBEDDER_OPENAI_API_BASE=
# azure_openai
EMBEDDER_AZURE_OPENAI_API_KEY=
EMBEDDER_AZURE_OPENAI_API_BASE=
EMBEDDER_AZURE_OPENAI_VERSION=
# ollama
EMBEDDER_OLLAMA_URL=http://host.docker.internal:11434
## DOCUMENT_STORE
DOCUMENT_STORE_PROVIDER=qdrant
QDRANT_HOST=qdrant